Industrial Organization

Fudan University

Department: School of Economics

Course Code	ECON130242
Course Title	Industrial Organization
Credit	4 Credit Hours 72
Course Nature	\square Specific General Education Courses \square Core Courses \square General Education Elective Courses \square Basic Courses in General Discipline \square Professional Compulsory Courses \downarrow Professional Elective Courses \square Others
Course Objectives	This course is a master course in Industrial Organization. The purpose of this course is to expose students to topics and techniques frequently discussed in Industrial Organization Literature.
Course Descriptio n	The first half will cover demand, supply, entry and matching. The second half will cover single-agent dynamics and market dynamics.
Course Requirements: Prerequisites: The first-year courses in microeconomics and econometrics.	
Teaching Methods: Lecture, presentation, group discussion	
Instructor's Academic Background: Ph.D.in Economics, University of Michigan, Ann Arbor, 2014 M.A. in Statistics, University of Michigan, Ann Arbor, 2011 M.A. in Economics University of Michigan, Ann Arbor, 2009 M.A. in Economics, Peking University, 2007 B.A. in Architectural History Peking University, 2004	

Members of Teaching Team				
Name	Gender	Professional Title	Department	Responsibility
Zhou Yu	Female	Lecturer	Industrial Economics	
Course Schedule				
Module 1: Demand Estimation (2 weeks)				
1.1 Aggregated Discrete Choice Models: Logit/Probit, Nested Logit Models,				
Random Coefficient Models				
1.2Most recent approaches				
Materials:				
Berry, S. (1994): "Estimating Discrete-Choice Models of Production				
Differentiation," RAND Journal of Economics, Vol.25, No. 2.				
Goldberg, K., P. (1995): "Product Differentiation and Oligopoly in International				
Markets: The Case of the U.S. Automobile Industry," Econometrica, Vol. 63,				
No. 4.				
Berry, S., J. Levinsohn and A. Pakes (1995): "Automobile Prices in Market				
Equilibrium," Econometrica, Vol. 63, No. 4, 841-890.				
Hendel, I. (1999): "Estimating Multiple-Discrete Choice Models: An Application				
to Computerization Returns", Review of Economic Studies, Vol. 66, No. 2,				
423-446.				
Module 2: Production Estimation (2 weeks)				
2.1 Overview of the issues in production estimation				
2.2 Traditional approaches based on Instrumental Variable Approach and				
Panel Data				
2.3 Most recent "structural" models based on the timing				
Materials				
Olley, G. S., and A. Pakes (1996):"The Dynamics of Productivity in the				
Telecommunications Equipment Industry," Econometrica, Vol. 64, 1263-1297.				
Levinsohn, J. and A. Petrin (2003): "Estimating Production Functions Using				
Inputs to Control for Unobservables," Review of Economic Studies, Vol. 70,				
No. 2, 317-341.				
Ackerberg, A. D., K. Caves and G. Frazer (2006): "Structural Identification of				
Production Functions," working paper, UCLA.				

Module 3: Entry Games (2weeks)

3.1 Parametric approaches

3.2 Semi-parametric approaches

Materials

Berry, T. S. (1992): "Estimation of a Model of Entry in the Airline Industry," Econometrica, Vol. 60, No. 4, 1992, 889-917.
Bresnahan, F. T and P. C. Reiss (1990): "Entry in Monopoly Markets," Review of Economic Studies, Vol. 57, No. 4, 531-553.
Bresnahan, F. T. and P. C. Reiss (1991a): "Empirical Models of Discrete Games," Journal of Econometrics, 48, 67-81.
Bresnahan, F. T. and P. C. Reiss (1991b): "Entry and Competition in Concentrated Markets," Journal of Political Economy, Vol. 99, No. 5, 997-1009.
Tamer, E. (2003): "Incomplete Simultaneous Discrete Response Model with Multiple Equilibria," Review of Economic Studies, Vol. 70, No. 1, 147-165.
Ciliberto, F. and E. Tamer (2009): "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Vol. 77, No. 6, 1791-1828.
Berry, S. and E. Tamer (2006): "Identification in Models of Oligopoly Entry," in Advances in Econometrics, Theory and Applications, Ninth World Congress, ed. By R. Blundell, W. Newey, and T. Persson, Vol. 2, 46-85. Econometric Society Monographs: Cambridge University Press.
Fox, T. J. and N. Lazzati (2013): "Identification of Discrete Choice Models for Bundles and Binary Games," Working Paper, University of Michigan, Ann Arbor.
Kline, B. (2013): "Identification of Complete Information Games," Working Paper, University of Texas, Austin.
Dunker, F., S. Hoderlein and H. Kaido(2013): "Random Coefficients in Static Games of Complete Information," Working Paper, Boston College.

Module 4: Matching (2weeks)

4.1 Matching with Transferable Utility
4.2 Matching with Nontransferable Utility

Materials

Chapter 1, 2 and 3 of "Two-Sided Matching" by Roth and Sotomayor (1990).
Chapter 8 of "Two-Sided Matching" by Roth and Sotomayor (1990).
Fox, T. J., (2010): "Identification in Matching Games", Quantitative Economics, Vol 1, 203-254.

Fox, T.J., (2013): "Estimating Matching Games with Transfers", Working Paper,

University of Michigan, Ann Arbor.
Sorensen, M. (2007): "How Smart Is Smart Money? A Two-Sided Matching Model of Venture Capital", Journal of Finance, Vol. 62, No. 6, 2725-2762.

Module 5: Single Agent Dynamics (2weeks)

Materials

Rust, J. (1987): "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Vol. 55, No. 5, 999-1033.
Pakes, A. (1996): "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks", Econometrica, Vol. 54, No.4, 755-784.
Hotz, V. J. and R. A. Miller (1993): "Conditional Choice Probabilities and the Estimation of Dynamic Models", Review of Economic Studies, Vol. 60, No. 3, 497-529.
Salva, A (2010): "Inferring Market Power under the Threat of Entry: The Case of the Brazilian Cement Industry," The RAND Journal of Economics, Vol. 41, No.2, 326-350.

Module 6: Market Dynamics I (2weeks)

Materials

Ericson, R. and A. Pakes (1995): "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," Review of Economic Studies, Vol.62, No.1, 53-82.
Bajari, P., L.C. Benkard and J. Levin (2007): "Estimating Dynamic Models of Imperfect Competition," Econometrica, Vol. 75, No. 5, 1331-1370.
Section 3 of Ackerberg, D., L., Benkard, S., Berry and A. Pakes (2006): "Econometric Tools for Analyzing Market Outcomes," Handbook of Econometrics, Vol. 6 .
Hendel, I and Nevo, A. (2006): "Measuring the Implications of Sales and Consumer Inventory Behavior," Econometrica, Vol. 74, No. 6, 1637-1673.
Gowrisankaran, G. and M. Rysman (2011): "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, Vol. 120, No. 6, 1173-1219.

Module 7: Market Dynamics II (2weeks)

Materials

Ryan, S. (2013): "The Costs of Environmental Regulation in a Concentrated Industry," Econometrica, Vol. 80, No. 3, 1019-1061.
Pakes, A., M. Ostrovsky and S. Berry (2007): "Simple Estimators for the Parameters of Discrete Dynamic Games (with entry/exit examples)," The

RAND Journal of Economics, Vol. 38, No. 2, 373-399.
Aguirregabiria, V. and Mira, P. (2007) "Sequential Estimation of Dynamic Discrete Games", Econometrica, Vol. 75, No. 1, 1-53.
Collard-Wexler (2010) "Demand Fluctuations in the Ready Mix Concrete Industry" Mimeo, NYU.
Holmes, T (2011) "The Diffusion of Walmart and Economies of Density" Econometrica, Vol.79, No. 1, 253-302.

Final Exam

Note: Every student is required to read the background readings and papers before going to class. Papers listed in "Materials" are available in the e-learning system under the column of "Resources".

Tentative Schedule

Note: Schedule subject to change (and it most likely will). Please see course website for most up-to-date schedule.

DATE CLASS
Lecture 1 General Overview
Lecture 2 Demand Estimation I: Aggregate Discrete Choice
Lecture 3 Demand Estimation I: Aggregate Discrete Choice
Lecture 4 Demand Estimation II: More recent approaches
Lecture 5 Demand Estimation II: More recent approaches
Lecture 6 Production Estimation I: Overview of issues
Lecture $7 \quad$ Production Estimation I: Traditional Methods
Lecture 8 Production Estimation II: Most recent structural models
Lecture 9 Production Estimation II: Most recent structural models
Lecture 10 Entry Games I: Parametric approach
Lecture 11 Entry Games I: Parametric approach
Lecture 12 Entry Games II: Semiparametric approaches
Lecture 13 Entry Games II: Semiparametric approaches Take-home Middle Exam Take-home Middle Exam
Lecture 14 Matching I: Matching with Transferable Utility
Lecture 15 Matching I: Matching with Transferable Utility
Lecture 16 Matching II: Matching with Nontransferable Utility
Lecture 17 Matching II: Matching with Nontransferable Utility
Lecture 18 Single Agent Dynamics I
Lecture 19 Single Agent Dynamics I
Lecture 20 Single Agent Dynamics II

All assigned work must be either typed or legibly written. Poor spelling, handwriting, grammar, style, etc., will not necessary count against you. However, if the grader of the assigned work is unable to discern the meaning of your work, your response will be assumed to be wrong. You must show all of your work in order to receive full credit.

The due date and time for homework assignments are given at the top of each assignment. Late assignments will not be accepted except under extreme circumstances and with a documented excuse. If a situation arises that necessitates that an assignment be turned in late, it is your responsibility to contact the instructor to the time that the assignment is due unless you are physically unable to do so.

Policies on Exams

The two take-home exams are not Cumulative and you need to complete these two exams independently.

As with homework assignments, exam answers must be legibly written. Poor spelling, handwriting, grammar, style, etc., will not necessarily count against you. However, if the grader of the exam is unable to discern the meaning of your work, your response will be assumed to be wrong.

You must show all of your work in order to receive full credit. Showing all work includes clearly identifying which formula(s)/equation(s) you are using to answer the question and why the specific use of the formula(s)/equation(s) is appropriate. Any answers that are not accompanied by sufficient information to show how the answer was derived will NOT be awarded full credit.

The exams will be TAKE-HOME and OPEN-BOOK.

Policy on Missed Exams

All exams must be taken during the days and times listed above. If you do not take an exam you will receive a score of zero for that exam. An exception will be made for excused absences such as a medical emergency provided that appropriate documentation for the absence is provided.

If you do receive an excused absence for the midterm exam, your score on the final exam will be used as you score for the excused midterm exam when computing your course grade. If you receive an excused absence for the final exam, you will need to arrange a make-up exam.

Students with Disabilities

If you believe you need an accommodation for a disability, please let me know at your earliest convenience. Some aspects of this course may be modified to facilitate your participation and progress. As soon as you make me aware of your needs, we can work with the Office of Services for Students with Disabilities to help us determine appropriate accommodation. I will treat any information you provide as private and confidential.

Teaching Materials \& References (Including Author, Title, Publisher and Publishing time):

TBA

