Economic Mathematics

Fudan University

Department: School of Economics

Course Code	MATH 120016					
Course Title	Economic Mathematics I					
Credit	5	Credit Hours	90			
Course Nature	□Specific General Education Courses □Core Courses □General Education Elective Courses □Basic Courses in General Discipline √Professional Compulsory Courses □Professional Elective Courses □Others					
Course Objectives	 By the end of the autumn semester a student has to: know about vector space, matrices; know about how to solve linear equations; Know about the principal results of one-variable and multivariable calculus; Be able to apply calculus to solve problems; Be able to find solutions of linear differential equations; Know about the main concepts and results of differential equations; Know about the main concepts of real analysis. 					
Course Descriptio n Course Req Prerequisi None	ourse The course gives students' skills of implementation of mathematical knowledge and practice to economic problems both theoretical and applied ones. There will be three parts in the course: scriptio 1) Linear algebra, including general theory of systems of linear equations and matrix algebra 2) Calculus with a focus on economic and social science applications 3) Brief introduction to real analysis. urse Requirements: Serequisites:					

Teaching Methods:

Lecture, presentation, group discussion

Instructor's Academic Background:

Prof. YING Jiangang obtained his PhD in mathematics from University of California San Diego, and his Master and Bachelor in mathematics from Nankai University. He worked at Zhejiang University (1993-2001) and has been working at Fudan University since 2001. His teaching courses include calculus, ODE, linear algebra, probability and many others in English.

Members of Teaching Team							
Name	Gender	Professional Title	Department	Responsibility			
Ying Jiangang	Male	Professor					
Course Schedule <u>Part I Linear Algebra</u> Week 1: Sets and mappings							
Week 2: Matrices, vectors and their geometry							
Week 3: Systems of linear equations							
Week 4: Matrix inversion and determinants							
Week 5: Vector spaces and related concepts							
Week 6: Diagonalisation of matrices							
Week 7: Applications of diagonalization							
Part II Calculus Week 8: Sequences, series and difference equations							
Week 9: Basics Calculus							
Week 10: Differentiation							

Week 11: One-variable optimization

Week 12: Integration

Week 13: Functions of several variables

Week 14: Multivariate optimization

Week 15: Differential equations

Part III Real Analysi6

Week 16: Intro to Real Analysis

Week 17: Final Exam

The design of class discussion or exercise, practice, experience and so on:

The course program consists of weekly regular classes and question sessions.

Class: Twice per week, 75 minutes/time, and doing of assignments

Question sessions: Once per week, 45 minutes/time

During each term there will be two mid-term exams and one final exam.

Grading & Evaluation (Provide a final grade that reflects the formative evaluation process):

Homework: 15%(1 point for each week) Midterm: 40% Final: 45%

Passing grade: 60, below 60 = fail

Teaching Materials & References (Including Author, Title, Publisher and Publishing time):

Mathematics for Economics by Michael Hoy, John Livernois, Chris McKenna et al.